Processing math: 100%

Examens Corrigé de L'analyse Numérique SMP S3

Examens Corrigé de L'analyse Numérique SMP S3

Examens Corrigé de L'analyse Numérique SMP S3


Exercice 1 (4 pt.) : Donner la décomposition LU de la matrice A suivante : 
A= \begin{pmatrix} 2 & 1 & -1 \\ 4 & 6 & -1 \\ 2 & -7 & 3 \\ \end{pmatrix}

Résoudre le système Ax = b où  b= \begin{pmatrix} 3 \\ 5 \\ -1 \\ \end{pmatrix}

Exercice 2 (6 pt.) On donne la fonction f(x) = x^2+x-1 , on veut approcher son zéro positif
x_{exacte} =\frac{\sqrt{5}-1}{2}\thickapprox 0.61803
1. En partant de a_0 = 0,5 et b_0 = 1 , Donner les deux premiers intervalles obtenus en utilisant
la méthode, de dichotomie et de Lagrange et préciser l'erreur dans chaque itération.
2. En prenant x_0 = 1, donner les deux premières itérations obtenues en utilisant la méthode
de Newton et préciser l'erreur dans chaque itération.

Exercice 3 (4 pt.) Donner le polynôme interpolant la fonction f aux points (-1,-1), (0,-1),
(1,-1) et (2, 5) en utilisant :
1. la base de Lagrange
2. la méthode des fraction divisées de Newton

Exercice 4 (6 pt.) Soit I =\int_0^1 \frac{1}{1+x^2} dx
1. Rappeler les formules composites du point milieu, des trapèzes et de simpson ainsi que
l'erreur commise dans chacune des méthodes,
2. Combien faut-il de subdivisions de [0, 1] pour évaluer I à 10^{-3} près en utilisant la méthode
de Simpson
3. Donner la valeur approchée de I, par la méthode de Simpson composite en utilisant la
subdivision x_0 = 0, x_1 = \frac{1}{2} et x_2 = 1.
4. Quelle est alors l'ordre de l'erreur commise ?

Téléchargement avec Corrigé : Version PDF

Aucun commentaire:

Enregistrer un commentaire